

VOLUME V

Runoff Treatment BMPs (Minimum Requirements #5, #6, #8, #10)

Runoff Treatment BMPs

Purpose

Reduce Pollutants Using Physical, Biological & Chemical Removal Mechanisms so that beneficial uses are maintained and, where applicable, restored.

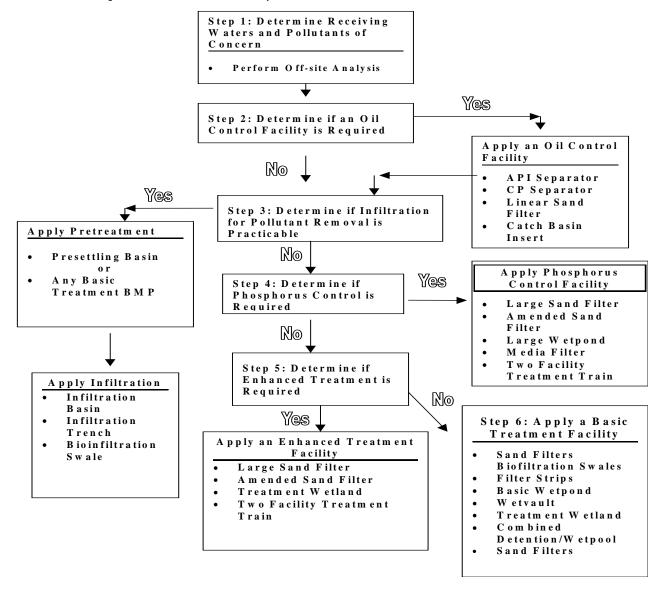
Volume V Runoff Treatment BMPs

- Chapter 1 Introduction
- Chapter 2 Treatment Facility
 Selection Process
- Chapter 3 Treatment Facility
 Menus
- Chapter 4 General Requirements
- Chapter 5 On-site Stormwater
 Management

Chapter 2 **Treatment Facility Selection**

Step 2 – Oil Control Necessary?

 Step 3 – Infiltration Treatment Possible?


 Step 4 – Phosphorus Control **Necessary?**

- Step 5 Enhanced Treatment **Necessary?**
- Step 6 Basic Treatment Backstop

Treatment Facility Selection

Figure 1.1 Treatment Facility Selection Flow Chart

Chapter 3 - Treatment Facility Menus

- Oil Control
 - Phosphorus
 - Enhanced
 - Basic



Oil Control

- Applies to High-Use Sites
 - ≥ 100 vehicles/1000 s.f. building area
 - petroleum storage/transfer > 1,500 gallons/yr
 - storage/maintenance of ≥ 25 vehicles
 over 10 tons
 - Intersections with 25,000 ADT/15,000 ADT
- Not Stand Alone BMPs
 - upstream of other BMPs

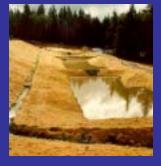
Oil Control (cont.)

- Performance Goal: (Not Effluent Limits!)
 - No ongoing, recurring visible sheen
 - TPH ≤ 10 mg/l daily average; ≤ 15 mg/l peak
- 4 BMP Options:

Phosphorus Treatment

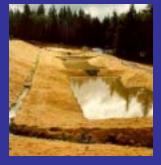
- Phosphorus sensitive watersheds
 - local designation or acceptance in a Water Clean-up Plan (TMDL)
- Performance Goal: 50% total P
 - WQ Design Volume/Flow Rate
 - Options 5 BMPs; 7 BMP trains

Enhanced Treatment



- Industrial, Commercial, Multi-family, Arterials and Highways to: fishbearing streams, lakes, or their tributaries
- Performance Goal: Greater dissolved metals removal
 - Reduce WQ standards violations
- BMP Options 4 BMPs; 7 BMP trains

Basic Treatment



- Discharges to ground, unless soil suitability criteria met
- Residential projects not in Phosphorus area
- Projects to Appendix V-A waters
 - Use Appendix I-C
- Projects not to fish-bearing waters
- Landscaped areas & employee only parking of industrial/commercial sites

Basic Treatment

- Performance Goal:
 - 80% TSS removal, or
 - 20 mg/l TSS if influent < 100 mg/l</p>
 - Typical particle size distribution
 - Goal applies to WQ design volume/flow rate
 - Goal applies on Annual Average including bypass
- BMP Options 8 listed

Chapter 4 General Requirements

Sequencing

- Setbacks, Slopes & Embankments
- Facility Liners
- Hydraulic Structures
- Maintenance Standards

Water Quality Design Flow Rate - Section 4.1.2

- Requirement = Treat 91% of Annual Average Volume based on historical record
- WWHM will identify flow rate
 - Downstream: Full 2-year release rate
 - Interim Upstream: Table 4.1
 - Use Post-developed w/o Detention Facility
 - % of the 2-year frequency flow
 - Varies with % Effective Impervious Area

Impact of New Flow Rate on Design Criteria

Treatment	Draft	New Criteria
type	Criteria	
Basic Bio- Swale	9 minutes	22 minutes
Continuous inflow swale	N/A	44 minutes
Filter Strips	9 minutes	22 minutes
O/W Separators	Q = 1992 flow rate	Q = 2.15 X new flow rate

Chapter 5 - On-site Stormwater Management

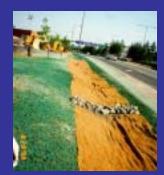
 Dispersion and Soil Quality BMPs (Required for Equivalency)

- Downspout Dispersion
- Concentrated Flow Dispersion
- Sheet Flow Dispersion
- Post-Construction Soil Quality and Depth

 Downspout Infiltration (Vol. III, Chapter 2)

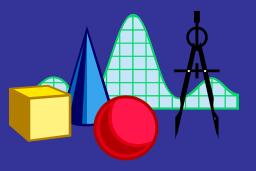
(for Non-Pollution Generating Surfaces)

Chapter 5 - On-site Stormwater Management



- Site Design BMPs (Recommended)
 - Preserving Natural Vegetation
 - Better Site Design
- Other Practices (Recommended)
 - Full Dispersion
 - -6 others
- Permeable/Porous Pavements (Recommended)
 - T5.40 does not get flow credit in WWHM

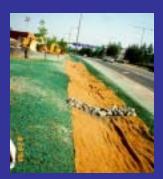
General Questions



VOLUME V RUNOFF TREATMENT BMPs

Chapter 6 Pretreatment

- 6.2. Systems to consider
 - Presettling Basins,
 - basic treatment BMPs,
 - emerging technologies,
 - detention ponds
- BMP T6.10 Presettling Basin


New design based on wetpool of 30% of runoff from 6 month, 24hr. event

Chapter 7- Infiltration and Bioinfiltration Treatment Facilities


- BMP T 7.10 Infiltration Basins
 BMP T 7.20 Infiltration Trenches
 BMP T7.30 Bio-infiltration Swales
- 7.3.1 Site Characterization Criteria
 - Surface Features
 - Subsurface Characterization
 - Infiltration Rate Determination
 - Soil Testing
 - Infiltration Receptor

Chapter 7 - Infiltration (cont.)

- 7.3.2 Design Infiltration Rate Determination
 - Table 7.1 USDA Soil Texture
 - Table 7.2 Gradation Testing
 - Table 7.3 In-situ PIT preferred vs. double-ring
- Deleted Darcy's Law
- 7.3.4 Sizing Criteria based on Volume using WWHM

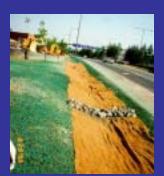
Chapter 7 - Infiltration (cont.)

SSC-2 GW Protection Area

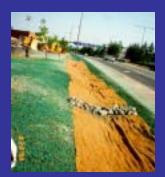
SSC-3 Vehicle Traffic Areas

SSC-6 Soil Physical/Chemical Suitability

SSC-9 Verification Testing of Completed Facility



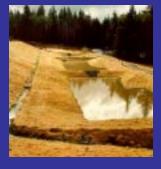
Chapter 8 Sand Filtration


- 8.6 Design Criteria
 - Basic Sand Filter to treat 91% runoff volume
 - Large Sand Filter to treat 95% runoff volume
 - Use of WWHM
 - Example Calculation based on SCS
 Curve Number, Routing Factor, Darcy's
 Law
 - On-Line/Off-line

Chapter 8 - Sand Filtration (cont.)

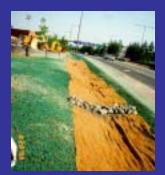
- Table 8.1 Sand specification
- BMP T8.00 Sand Filter Basin
- BMP T8.10 Sand Filter Vault
- BMP T8.20 Linear Sand Filter
- Appendix V-C Geotextile
 Specifications

Chapter 9 Biofiltration



- BMP T9.10 Basic Biofiltration Swale
- BMP T9.20 Wet Biofiltration swale
- BMP T9.30 Continuous inflow swale
- BMP T9.40 Basic Filter Strip
- BMP T9.50 Narrow Area Filter Strip

Biofiltration (cont.)



- Table 9.1 Sizing Criteria/Basis
 - 1992 Metro Study
 - Dr. Richard Horner Recommendations
 - Colwell Study (2000)
 - Manning's n
 - Maximum hydraulic velocity
- Sizing Procedure (pages 9-3 to 9-16)

Chapter 10 Wetpool Facilities

- BMP T 10.10 Wetponds
 - Basic-wetpool volume: the 6 mo., 24hr. storm event
 - Large-wetpool volume: 1.5 times the 6 mo., 24hr. storm event
 - Use SCS Curve # equation (Vol. III, Section 2.3.2)
 - Table 10.1-Plant species recommended for wetponds
- BMP T10.20 Wetvaults
- BMP T10.30 Stormwater Treatment Wetlands
- BMP T10.40 Combined Detention/Wetpool Facilities

Chapter 11 Oil/Water Separator

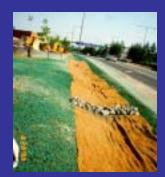
- BMP T11.10 API (Baffle Type)
 Added design flexibility for small sizing
 BMP T11.11 Coalescing Plate Type
- 11.4 Applications
- 11.5 Site Suitability
 - TSS control
 - Peak flow bypass
 - Maintenance

Chapter 12 **Emerging Technologies**

- Test Protocol
- Technical Review Committee
- Assessing Levels of Development (Pilot & General **Use Levels)**
- Ecology Web Site

 For New/Re-development: must test performance

Chapter 12 (cont.)



- 12.6 Examples of Emerging Technologies
 - Media Filters
 - Amended Sand Filters
 - Catch basin Inserts
 - Manufactured Storm Drain Structures
 - Vortex Enhanced Sedimentation
 - Cylindrical Screening
 - Engineered Cylindrical Sedimentation
 - High Efficiency Street Sweepers



General Questions

